Biochip Platforms:current milestones and challenges ahead

Luca Benini Carlotta Guiducci DEIS Università di Bologna {Ibenini,cguiducci}@deis.unibo.it

Biochip: characteristics

- Microfabricated (silicon) substrate
- Active: integrates sensing and sample handling, controlled delivery functions
- Biological sensing elements: analyte detection based on bio-molecular reactions
- Biocompatible: is not impacted by and does not disrupt biochemical processes

Applications

- Diagnosis (target: protein biomarkers....) → reliability
- Expression analysis (target: protein or mRNA) → throughput
- Gene-based tests (identification, predisposition to diseases, to drugs) → selectivity
- Drug delivery (in vivo) → biocompatibility

Analytes

Why a Biochip platform?

- Increase productivity through reuse
 - Components
 - Interfaces
- Simplify the design process
 - Helps multi-disciplinary integration
 - Separation of concerns (much more relevant for heterogeneous technologies)
- Facilitate the creation of derivatives
 - Conquer low volume markets with low investment
 - Fast design space exploration
- Configurability (post-fabrication) is a requirement
 - In-field tuning (in a lab, point-of-care)

Biochip Platforms: Components

•

Bio-molecular components

Forms of Biological receptors

Form	Advantages	Disadvantages
Purified	sensitive, no side reactions	expensive, unstable
Whole cell	stability, possibility of multi-step reactions	side reactions
Tissue slice	minimal preparation, natural environment	slow diffusion, side reactions

Biological Receptors

Antibodies/Antigen

> Highly-selective interaction, very tight binding, ultrasensitive

> Antibodies can be raised almost again any antigen.

Disadvantage: No intrinsic amplification

Labelling: Radio-isotopes, Enzymes, Fluorescet probes, chemiluminescent probes, metal tags

Biological Receptors

Nucleic Acids

DNA and RNA dignostic sensors in chip format; used to detect genetic disorders and expression levels of protein in parallel

Receptors can be synthesised in the lab

>Hybridization can be controlled conveniently by temperature, ionic strength and pH

>Hybridization can be analysed by UVspectroscopy

Disadvantage: No intrinsic amplification --Labelling: Radio-isotopes, Enzymes, Fluorescet probes, chemiluminescent probes, metal tags

Biological Receptors

Receptor proteins

Many receptor proteins are on the surface of cells and embedded into membranes

>Applications mainly expected in detection of neuro-transmitters, hormones, neuro-active drugs, anaesthetics

Highly selective but often difficult to isolate.

>Interfacing cell biology with microelectronics: nerve cells on chips

Transducer components

Detection principle based on changes of	Electronic/Silicon-based sensing element
Mass or Surface Stress	Bio-modified Cantilevers/SAW devices
Refractive Index	Bio-modified Surface of porous silicon
Electrochemical Activity	Bio-modified Elelctrodes
Interface Electrical parameters	Bio-modified Elelctrodes
Charge	Field-effect devices
Absorbance	Photodetectors
Light emission	Photodetectors

Detection principle based on changes of Mass or Surface Stress Electronic/Silicon-based sensing element Bio-modified Cantilevers

Surface stress – Mechanical Displacement (Bending)

- IBM Fritz et al. Science 288, 316 (2000)
- Deflection of about 10 nm for a 16-mer oligonucleotide target.
 eight identical silicon cantilevers length of 500 μ m
 250 μ m pitch width of 100 μ m

thickness of 0.5–1 μ m

Detection principle based on changes of Refractive Index

Electronic/Silicon-based sensing element

Bio-modified Surface of porous silicon

 The silicon oxide surface of the porous layer can be modified

 Reflection of white light at the top and bottom of the PSi layer results in an interference pattern (Fabry-Perot fringes).
 The reflectometric interference spectrum is sensitive to the refractive index of the PSi matrix.

Interactions of the molecular species with their recognition partners immobilized on the surface induce a change in the refractive index of the semiconductor, giving rise to wavelength shifts in the fringe pattern that can be easily detected and quantified.

Lin, Science, vol. 278, pp-840-842 (1997)

Detection principle based on changes of Electrochemical Activity

Electronic/Silicon-based sensing element Bio-modified Elelctrodes

Sensor array based on 0.5 μ m, 5V standard CMOS **Measurement Circuits on-chip**

Enzymatic and redox-cycling processes

Additional process steps to expose and contact gold sensor electrodes

Microfluidic components

Common microfluidic functional blocks

Micro-wells

Micro-channels

Micro-needles

Micro-pipette

Configurability

- Digital+Analog configurable electronics (well known)
- Bio-configurability:
 - different substrate-linker layers (between transducer and probes)
 - different receptors
 - different chemical signal amplification strategies
- Analogy with mask programmable devices

Substrate-linker layers

- Gold+thiols
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
 G G G G
- Oxides+silane-based NH- TTTTGATAAACCCACTCTA monolayers
 NH- TTTTGATAAACCCACTCTA (CH₂)₅ NH (CH₂)₃

Micrel Lab Research Activities on Biochips

More Moore

Signal processing

Communication module

Power supply unit

More than Moore

Bio-molecular receptors

Substrate-linker

Transducers

Sample manipulation

Application of molecular recognition in course of investigation

 detection of protein biomarkers for cancer diagnosis and monitoring (*Xeptagen, Parco Tecnologico Vega, Venice, Italy*)

 detection of RNA sequences for the diagnosis of viral infections (expression analysis) (*Istituto Spallanzani, Roma, Italy*)

 Label-free high-throughput expression analysis (Comparative analysis of biochip devices with respect to standard fluorescence scanner-based microarray tests) (*CRIBI, Padova, Italy*)

Mass produced, Reliable, Low-cost, Portable

Detection Principle based on changes of Conductive Substrate/solution interface **impedance**

Substrate-linker layer

Ultra-clean **gold layer** modified with thiol/alkanthiol linkers

Transducer Capacitance measurement circuit

Detection Principle based on changes of

Conductive Substrate /solution interface impedance

Conductive Substrate /solution interface impedance

Substrate-linker layer

Ultra-clean gold layer modified with thiol/alkanthiol linkers

Transducer

Integrable capacitance measurement circuit

Experimental Results I

C. Guiducci, C. Stagni, G. Zuccheri, A. Bogliolo, L. Benini, B. Samorì, B. Riccò," Biosensors and Bioelectronics, vol. 19, pp. 781–787, 2004.

Experimental Results II

Gold electrodes – Integration

- **1** Macroelectrodes
- **2** Microelectrodes on a passive silicon substrates (STMicroelectronics)
- **3** Microelectrodes on an active silicon chip integrating addressing circuitry. Analog output is provided and measured externally (Infineon Technologies)

4 – Microelectrodes on an active silicon chip integrating addressing circuitry and distributed measurement circuit (fully-digital interface – higher array density) (Infineon Technologies)

Gold electrodes on a silicon chip

Gold Electrodes exposed on the surface of the biochip

2 - Microelectrodes on a passive silicon substrates (STMicroelectronics)

			8 elec	capa bety trodes	Total acitanc ween 1	measured ce (2 × 10 ³ µm ²): 00 pF and 1 nF	Percentage decrease of Capacitance after
	6			-100		Sample	sample deposition and rinsing
				-75		Complementary sequence	25.5 ± 5.33
				-50 -25		Non Complementary Sequence	-5.2 ± 2.2
0	25	50	75		1000.0 пм 0.0 пм	DNAfree sample	- 4.95 ± 2.22

3 – Microelectrodes on an active silicon chip

- CBCM technique
- Variable electrodes surfaces (1 mm²-0,0001 mm²)
- Analog output signal (current)

3 – Microelectrodes on an active silicon chip Results

Non-complementary probes

4 – Microelectrodes on an active silicon chip

4 – Microelectrodes on an active silicon chip

Detection Principle based on changes of Conductive Substrate /solution interface **impedance**

> Substrate-linker layer Conductive oxide substrates modified with silane linkers

Transducer Capacitance measurement circuit

Substrate-linker layer

Results

Transparent and conductive oxides: **CdIn₂O₄ SnO₂ ITO** (in collaboration with LMGP-Grenoble)

	CPE-T (µF)	CPE-P
Single-strands (P1)	9.08 ± 0.07	0.9222 ± 0.0022
Double-strands (P1+T1)	6.33 ± 0.03	0.9495 ± 0.0011

Fluorescence images to demonstrate specificity of oligonucleotide detection on conductive oxides

Probes P1 + Targets T1

Probes P2 Non-complementary

Detection Principle based on changes of Molecular UV-**absorbance**

Substrate-linker layer

Quartz substrate modified with silanebased (amine termination) linkers

> Transducer UV photodetectors

Detection Principle based on changes of

Each detected target molecule is 100-100 times more absorbent than its probe

Molecular UV-absorbance

Absorbance

The measurement of absorption of ultraviolet by species in solution provides one of the most widely used methods of quantitative analysis available in analytical laboratory

```
Lambert-Beer law:

A = ε c l

ε, molar extinction coefficient

[L mole<sup>-1</sup>cm<sup>-1</sup>], C concentration [M], l

pathlength [cm]

is a function of wavelenght and of molecular species in

solution
```


Transducer

Amorphous Silicon UV photodetector

Resolution (Minimum UV-absorbance A): 10⁻⁴ - 10⁻³

Photodetector response to DNA samples absorbance

Detection of molecular layers

Transducer Non-volatile memory cells

Standard EPROM cell

UV are used to lower the threshold voltage V_{TH} by extracting electrons previously injected into the Floating Gate

EPROM cell single-poly

better exposition to UV ligth

- extended floating gate surface
- exposed floating gate

Experimental Results

DNA in buffer solution (bulk) 30-mer; ε = 280700(L/mole*cm); MW 9208 (g/mole) Buffer TAE Mg2+ Non-volatile memory cell

 easy implementation of highdensity chips

Amorphous Silicon Detectors

- can be deposited large surface
- low-cost
 implementation materials
- high-resolution

Technology challenge Heterogeneous integration

Technology	Function	Material
Microfluidics	Sample handling	Biocompatible materials (PDMS, Plexiglass)
Surface chemistry Bio-Chemistry	Bio-functionalization	Biochem. materials & surface chemistry
MEMS	Sensors & RF components	Bio- & Si-BIOL Compatible materials
Microelectronics	Processing & Digital communication	Silicon technology